
Automatic Generation of Riemann Surface

Meshes

Matthias Nieser, Konstantin Poelke, and Konrad Polthier ?

Freie Universität Berlin, Germany
matthias.nieser@fu-berlin.de

konstantin.poelke@fu-berlin.de

konrad.polthier@fu-berlin.de

Abstract. Riemann surfaces naturally appear in the analysis of com-
plex functions that are branched over the complex plane. However, they
usually possess a complicated topology and are thus hard to understand.
We present an algorithm for constructing Riemann surfaces as meshes
in R3 from explicitly given branch points with corresponding branch in-
dices. The constructed surfaces cover the complex plane by the canonical
projection onto R2 and can therefore be considered as multivalued graphs
over the plane � hence they provide a comprehensible visualization of the
topological structure.
Complex functions are elegantly visualized using domain coloring on
a subset of C. By applying domain coloring to the automatically con-
structed Riemann surface models, we generalize this approach to deal
with functions which cannot be entirely visualized in the complex plane.

1 Introduction

Riemann surfaces are a fundamental concept in modern complex analysis, topol-
ogy and algebraic geometry. Bernhard Riemann himself introduced them 1851
in his dissertation �Grundlagen für eine allgemeine Theorie der Functionen einer
veränderlichen complexen Gröÿe�, but it was Felix Klein and Hermann Weyl who
caused his idea to become known among the mathematicians in the beginning
20th century. Since then, among other things, Riemann surfaces serve as general-
ized domains for complex functions because multi-valued complex functions can
be turned into single-valued functions when de�ned on such a surface instead of
the complex plane. However, these surfaces might possess a complicated topolog-
ical structure since multi-valued functions give rise to rami�cations determined
by characteristic points - the so-called branch points.

Riemann surfaces on manifolds are used for several methods in computer
graphics. For example, [1] uses a universal covering for the computation of short-
est cycles in each homotopy class of a surface. The surface parameterization
method [2] computes a 4-sheeted covering in order to represent the (multival-
ued) parameter function on higher genus surfaces. The notion of covering spaces
provides a nice theoretical foundation of this parameterization approach.
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1.1 Related Work

Surprisingly there is very little about the computer-aided visualization of Rie-
mann surfaces. The most important contribution might be the work by Trott [3,4]
for Wolfram Research. He uses the symbolic derivation and nonlinear equations
solver provided by Mathematica and computes 3D plots based on an explicit
function de�nition. To the best of our knowledge it is the only work that auto-
matically generates visualizations of Riemann surfaces � most available images
of Riemann surfaces usually show explicitly parametrized surfaces.

Important achievements concerning the technique of domain coloring are
done by Farris [5], who also introduced this term. He uses simple color gradients
without further features. The colorings of Pergler [6] and Lima da Silva [7] are
of better quality and Lundmark [8] gives a detailed introduction and uses a
color scheme revealing several important aspects of complex functions. Hlavacek
[9] provides a gallery of complex function plots, using color schemes similar to
Lundmark's and Pergler's. Further advancement and additional indicators are
provided in [10].

1.2 Contribution

In this paper we present an algorithm for computing 3D models for Riemann
surfaces based on given branch points and branch indices. Usually these surfaces
possess a non-trivial topology and are thus hard to capture. The models we con-
struct are a visualization technique for an easier understanding of the topology
of these surfaces. This process consists of two parts:

1. Cutting the surface open, either by a user given cut graph or by computing
the shortest cut graph as in [11], and computing multiple surface layers.

2. Computing a height function for each of the layers. The resulting surface is
then interpreted as a graph over the complex plane. Since this embedding is
used for visualization, there is possibly more than one height function that
could be used in order to produce reasonable results. We use harmonic height
functions as a natural choice as they produce almost smooth surfaces.

Whereas Trott's method [3] provides 3D plots of Riemann surfaces, we gener-
ate triangulated meshes which can be used as 3D models for further processing.
As our meshes will be patched together from single sheets, we can easily extract
parts of the model in order to focus on the important features of the surface.

We also apply domain coloring to these Riemann meshes � a method tradi-
tionally used for visualizing complex functions by a color map on the complex
plane. However, complex functions usually de�ne a covering of the complex plane,
which can be explicitly constructed as a triangle mesh with our method. Using
this triangle mesh as new domains for domain coloring, we can visualize analyt-
ical extensions of functions that are discontinuous when de�ned on the complex
plane which helps for an overall understanding of those functions.

The paper is organized as follows: Sect. 2 introduces Riemann surfaces and
gives the theoretical background and general setting of our approach. Sect. 3



explains the main concept of our visualization approach. The algorithm itself is
explained in Sect. 4, and in Sect. 5 results are presented and discussed.

2 Riemann Surfaces and Complex Analysis

2.1 Problem Statement

The problem of visualizing covering surfaces has arisen to us in the analysis of
complex functions. Given a holomorphic map η : U ⊂ C → V ⊂ C between
two simply connected domains in the complex plane, its geometrical structure
can be visualized by domain coloring as demonstrated in [10]. Domain coloring
uses a reference image which is de�ned over V and transfers it to U via η. The
resulting image in U yields many information about η.

Fig. 1: Domain coloring (cf. section 5.2) is a technique that makes use of a color scheme
to visualize complex valued functions. The left image shows a reference color scheme
that represents the complex plane. The right image shows a typical color plot of a
meromorphic function. The black spots denote zeros, here with multiplicity 2 (the
bigger one on the left) and 1 (the one on the right). The white spot in the upper third
is a double pole whereas the punctual spot at the bottom is a simple pole. This can
also be seen from the multiplicity and order of the colors around these points � the
double zeros and poles are surrounded by the complete color circle twice in contrast to
the simple zeros and poles.

A problem arises if η is non-injective and one ones to color its inverse η−1

which is now a multivalued function. In this case, there are points in U which
obtain more than one color and we would obtain sort of a multivalued image.
We present a method for visualizing even those functions. The main idea is to
use a covering surface X of V and a bijective map f : U → X that encodes the
same geometrical information as η.

2.2 Theoretical Background

This section gives a short introduction into Riemann Surfaces and covering
spaces. Good introductions to the general theory are e.g. [12�15].



De�nition 1 (Riemann Surface). A Riemann Surface is a Hausdor� space
together with a holomorphic structure, i.e. with an atlas of charts {(Ui, hi)}, hi :
Ui → C whose transition maps hj ◦ h−1

i are biholomorphic complex functions.

In our setting, we use the notion of coverings from complex analysis. They
are special cases of topological coverings equipped with a complex structure and
can be easily described using local winding maps:

De�nition 2 (Winding Map, Covering, Branch Point, Branch Index).
A winding map η : U → V between two disks is a map which is isomorphic to
the function z 7→ zn on a unit disk in C. n is called the winding number of η.

A covering (X, η) of a Riemann Surface Y is de�ned by a map η : X → Y ,
such that each point y ∈ Y has a neighbourhood V whose inverse image is a
union of countably many disks (layers) and the restriction of η to each of these
disks is a winding map (with winding number n(x), ∀x ∈ η−1(y)).

If there is a point x with n(x) ≥ 2, the covering is branched and y = η(x) is
a branch point with branch index n(x). If n(x) = 1 for all x ∈ X, the covering
is unbranched.

The preimage of a point y ∈ Y is called the �bre of y. One can show, that
if the �bre is �nite then the sum gr(η) :=

∑
x∈η−1(y) n(x) is independant of the

choice of y and is therefore called the grade of η.

Theoretically, our approach can handle �nite or in�nite coverings. However,
for simplicity we restrict to coverings with �nite �bres. For instance, they arise
naturally as coverings induced by implicit functions that are de�ned by algebraic
equations. In particular, if one assumes η to be proper (i.e. preimages of compact
sets are compact) and to have only �nite �bres, η is called a �nite map and we
have the following theorem:

Theorem 1. Every �nite holomorphic map between Riemann surfaces de�nes
a covering.

The �nite holomorphic maps C→ C are exactly the non-constant polynomi-
als, hence the powers z 7→ zn and all �nite concatenations of them are coverings
with �nite �bres. An example of an in�nite covering is the exponential map
exp : C→ C∗.

For a given covering X, a Deck map is an automorphism on X which leaves
all �bres invariant, i.e. D(η) := {g ∈ Aut(X) : η ◦ g = η}. A Deck map of a
covering η is uniquely de�ned by a given point a ∈ X and its image η(a). The set
of all Deck maps form a group and this Deck group uniquely de�nes the topology
of the covering.

We consider coverings which are normal and cyclic meaning that the Deck
group is isomorphic to the modulo group (Z/nZ,+).



3 Approach

3.1 Visualization of Holomorphic Functions

We construct a topologically correct triangle mesh X for a given covering η :
U → V on given simply connected sets U, V ⊂ C. For simplicity, let η be �nite
(i.e. η has �nitely many layers). The surface X covers V in the same way as U
does, i.e. there is a covering map π : X → V and an isomorphism f : U → X,
such that η = f ◦ π. Thus, both coverings π and η are isomorphic (Fig. 2, left).

We realize the surface X as a triangle mesh, which admits the same com-
binatorics as V and whose vertices live in C × R. The projection operator π is
just the Euclidean projection (z, r) 7→ z. The covering can therefore be seen as
a (multivalued) graph over the complex plane. However, in general X cannot be
embedded in R3 and we usually obtain self-intersections.

As an additional visualization, one can now apply the domain coloring tech-
nique to these Riemann surfaces (Fig. 2, right). Instead of V , the surface X
gets colored by transfering the domain image via f onto X. This will produce
a continuous pattern, since f is bijective (in contrast to η). Since π is just a
projection along the real axis, all the metric information about the function is
still contained in f and can intuitively be captured by the viewer.

f

η

π

X

U V

Fig. 2: Left: Given covering η will be visualized by X. Right: Domain coloring of η(z) =
z2.

This visualization helps to recognize the di�erent types of extraordinary
points. Branch points are characterized as center points of a helix, whereas sin-
gularities can be recognized as special points in the texture on the covering.

3.2 Branch Points and Branch Graph

Given the position of all branch points B = {b0, . . . , bd−1} ⊂ V with correspond-
ing rami�cation indices (r0, . . . , rd−1), this uniquely de�nes a covering over the
complex plane which is normal and cyclic up to isomorphism.



A neighborhood of a branch point p ∈ η−1(B) on the covering looks like the
union of one or more helices with ri layers. Away from branch points, V \ B is
covered by an unbranched surface � the �bre of every open disc is isomorphic
to just N ∈ N copies of the disk. For a globally consistent covering, we need at
least N := lcm(r0, . . . , rd−1) many layers (the covering is of degree N). Thus,
the �bre over each branch point bi consists of N/ri many helices with ri layers
each.

For the construction we need to enumerate the di�erent layers of X. In gen-
eral, there is no globally consistent enumeration since the covering is a connected
surface and the layers exchange their role in di�erent regions.

Given an arbitrary point v0 ∈ V \ B as root point, its �bre consists of N
disjoint points which will be enumerated by x0, . . . , xd−1. For each pair of points
(x0, xi), i ∈ {0, . . . , d − 1}, there is a unique Deck map (de�ned on the whole
covering) which maps x0 to xi. This Deck map transfers the cyclic order of the
layers to any other �bre in V (the Deck map is a permutation in each �bre).
Thus, all �bres in the covering are global consistently ordered in the same cyclic
manner.

We can therefore enumerate the d layers as follows: Let G be a cut graph of
V \ B, i.e. the union of paths {γk}, which cut the surface open into a simply
connected disk (Fig. 3). Each path γk must start and end either at a branch
point or at the boundary of V . The covering η−1(V \G) of this slotted surface
then decomposes into d disjoint connected components Xi.

The preimage η−1(γk) of a cut path on the covering consists of d paths in
X. Each of these (lifted) paths separate two layers: Xi on the left side and Xj

on the right side of the directed path. Because of the cyclic order, the di�erence
sh(γk) = j − i is the same for all these lifted paths and is called the shift of γk.
The paths γk together with their shifts sh(γk) form a branch graph of V .

γ0 γ1
γ2

γ3
b0

b1

b2

b3

Fig. 3: A branch graph on a surface.

The branch graph just connects di�erent layers Xi to a closed covering sur-
face. When a given point p ∈ Xi in an arbitrary layer of the covering is continu-
ously moved around, it still stays on Xi until a cut path is crossed. In this case,
the layer changes to X(i±sh(γk)) mod d (with a + sign if it crosses the path from
left to right).

The labeling Xi therefore depends on the choice of the cut graph. However,
the covering itself is independant from this choice. Our algorithm will construct



an arbitrary branch graph from given branch points and uses it for the generation
of the covering. The topology of the covering surface will not depend on G, but
only on the position and indices of branch points.

3.3 Shifts

The shifts of a cut path de�ne, how the di�erent layers on the left and right side
of the path are connected. Similarly, we introduce the shift at a branch point:

De�nition 3 (Lifting, Layer Shift). Given a point p ∈ V and an in�nitesimal
small loop δ : [0, 1]→ V around p (counterclockwise). Let δ′ be a lifting of δ, i.e.
a (not necessarily closed) path in X with π(δ′) = δ. Denote Xi, Xj the layers of
X, such that δ′(0) ∈ Xi and δ

′(1) ∈ Xj. Then sh(p) := (j − i) mod N is called
the layer shift of the point p.

Fig. 4: 2D cut through the layers of di�erent coverings. Top left : Branch point with
ri = 2. Bottom left : branch point with ri = 3. Right : Covering with N = 6 sheets and
two branch points. The left one has ri = 2 and a shift of 3, the right one has ri = 3
and a shift of 2.

The layer shift just measures how many layers are being crossed when walking
around p once. The shift is 0 for all regular points and 6= 0 at branch points. The
shifts of branch points and the shifts of cut paths are related by the following
equation:

Let bi be a branch point and γk the set of paths starting or ending in bi.
Then the shift of bi is the sum

sh(bi) =
∑

starting γk

sh(γk)−
∑

ending γk

sh(γk). (1)

This de�nes a linear relation between shifts of the d branch points and shifts of
the d cut paths (since V has a boundary, which is also connected by the branch
graph G). The sum −

∑
bi
sh(bi) mod N is called the shift of the boundary. If it

is 0, then the boundary of V lifts to a closed loop on X, otherwise walking along
the boundary once will end on another layer on the covering.

The shift at a branch point depends on the rami�cation index as follows:
The neighborhood of each branch point consists of N/ri helices whose layers



are entwinded. Thus, the shift is an arbitrary number siN/ri, si ∈ N, but si
must be coprime to ri in order to produce the correct number of helices, e.g. set
sh(bi) := N/ri.

The algorithm only needs the branch graph and the shifts of all cut paths. If
only the branch points and their rami�cation indices are given, then their shifts
can be chosen as described above and the shifts of the cut paths uniquely follow
from Eqn. 1 (assuming that the shift of the boundary is also prescribed, e.g. to
0).

For the application of domain coloring, it is necessary to explicitly prescribe
the shifts in addition to the rami�cation indices (see Sect. 5.2). This would be
an optional input for the algorithm.

4 Algorithmic Generation of Riemann Surface Models

The algorithm for generating the surface models can be separated into several
parts. As an input it takes a set of branch points {b0, . . . , bd−1} which are located
on vertices on a simply connected planar geometryMh, i.e. a triangulated planar
mesh.

Additionally, the number of layers N of the covering and the shift of the
branch points sh(bi) are given. One could alternatively prescribe the local ram-
i�cation indices ri of all branch points and then set N := lcm(r0, . . . , rd−1) and
sh(bi) := siN/ri for any arbitrary integer si which is coprime to ri. The shift of
the boundary is set to −

∑
bi
sh(bi).

The following subsections describe the individual steps of the algorithm:

Algorithm 1: Compute Riemann Surface

Input: Triangulated domain Mh, Branch points bi, Shifts sh(bi)
Generate a branch graph (Sect. 4.1)1

Cut domain geometry along the branch graph (Sect. 4.2)2

Compute height function on branch graph in all sheets (Sect. 4.3)3

Extend height function smoothly to the inner (Sect. 4.4)4

4.1 Building the Cut Graph

The cut graph of the surface Mh consists of paths γk along edges of Mh, whose
union cut the surface open into a topological disk. Branch points are thereby
considered as in�nitesimal holes in the surface, thus they must be connected by
the branch graph.

The choice of a special cut graph to given singularities is not unique. There
may be more than one graph and these paths might be topologically di�erent
and the choice of another cut graph alters the embedding of our constructed



surface into C × R. However the topology of the embedding does only depend
on the branch points and not on the cut graph.

Hence, we allow any user given cut graph as an input. If such a graph is not
speci�ed explicitly, it can be automatically generated � a canonical choice is the
shortest cut graph of the surface. [11] describes an algorithm on computing this
shortest cut graph for surfaces without boundary. A generalization to surfaces
with boundary can be found in [16].

Given the cut paths γi, their shifts are computed as explained in Sect. 3.3.
They are completely determined by the shifts of the branch points.

4.2 Cutting the Base Geometry

The next step is cutting the plane Mh along all cut paths. Each cut path γk is
given as a path on edges of the planar domain geometry, i.e. it can be described
by a list of vertices v1, . . . , vk. Cutting Mh along γk means that every vertex
vj , j ∈ {2, . . . , k − 1} has to be duplicated and its neighborhood has to be
updated. The original vertex vj is connected with vertices on the left hand side
of γk, whereas the copy v

′
j is connected with vertices on the right hand side only.

Figure 5 demonstrates this procedure.

(a) Every vertex v (red star) has
neighbors (red dots) which are its ad-
jacent vertices in Mh and neighbors
on the branch cut γk (small stars).

(b) Duplicating v yields a vertex v′

(green star). Update the neighbor in-
formation such that v (resp. v′)is con-
nected with its adjacent vertices lying
on the left hand side (resp. right hand
side) of γk. Note that by cutting the
plane, every path becomes part of the
boundary.

Fig. 5: Cutting Mh along γk.

The resulting geometry then represents one sheet of the future covering sur-
face. Since all sheets are of the same topology, the slotted domain surface is
copied N − 1 times and we obtain a total of N geometries Xi all cut in exactly
the same manner.



4.3 Boundary Constraints for the Height Function

After having cut the domain, we now have N triangle meshes Xi representing
the di�erent sheets of the covering, which still live in the complex plane. This
section and Sect. 4.4 deals on lifting them into C × R by computing a height
function. We start by prescribing height values on the boundary of Xi, i.e. on
the cut path and the outer surface boundary.

The sheets in the resulting geometry should be stacked according to their
cyclic order, i.e. X0 is at the bottom and XN−1 is the top most layer. The
height di�erence between two consecutive sheets is de�ned by a constant ∆ > 0,
thus layer Xi is assigned a height value of i∆.

Given a sheet Xi and a cut path γk between two branch points bm and bn,
we will now describe, how the height values for the vertices on the left side of
γk are computed. The vertices on the right side are then handled in the same
manner, but using the inverted path with a negative shift value of −sh(γk).

The vertices in Xi on γk (on the left side) should be connected to vertices of
the layer X(i+sh(γk)) mod N . The height function must therefore change smoothly
from i∆ (in Xi) to (i+ sh(γk)) mod N ·∆ (in the neighboring sheet). The path
γk is somewhere between these two layers, thus let is give it a height of the
average hleft(γk) := (i+ (i+ sh(γk)) mod N)/2 for a moment.

If we just assigned this constant height value to all vertices on γk, it would
cause problems in the vicinity of the start and end points of γk (branch points
bm, bn), since several layers with di�erent height values are glued together there.
Hence we interpolate smoothly between these height values.

As described in Sect. 3.2, the branch point bm occures exactlyN/rm = sh(bm)
times in the covering. Denote them by b′m,0, . . . , b

′
m,N/rj−1. Each b

′
m,i connects

all the sheets Xi, Xi+sh(bi), . . . , XN−sh(bj) (Fig. 6, left). We de�ne the height of
b′m,i as the average value ((N − sh(bj))/2 + i)∆.

We can now de�ne the height function on γk with the following properties:

� Height in start point bm is ((N − sh(bm))/2 + (i mod sh(bm)))∆.
� Height in end point bn is ((N − sh(bn))/2 + (i mod sh(bn)))∆.
� Height of vertices between bn and bm is (i+ ((i+ sh(γk)) mod N))/2.

We let the height function be constant on the middle third of the branch cut
and interpolate on the other parts with a clamped cubic spline, i.e. a polynomial
of the form

s(x) = a+ bx+ cx2 + dx3 (2)

with given boundary values and �rst derivatives at the end points (Fig. 6, right).
It remains to de�ne a height function on the outer boundary of Xi. All our

examples are constructed such that the shift of the outer boundary is 0 (i.e.
the shifts of all branch points sum to 0). In this case, the height on the outer
boundary is just the constant i∆. If the shift of the boundary is not 0, then
the height function must interpolate smoothly between the di�erent layers when
walking around the boundary once. It does not matter how this interpolation is
done as long as it de�nes a smooth height function along the boundary.



(N − sh(bm))∆

(N − sh(bm))∆/2
∆

Fig. 6: Computing the height function. Left: Vicinity of a branch point bm, where
di�erent layers are connected. Right: Height function along a cut path γk.

4.4 Computing the Height Function on the Inside

Having de�ned a height function on the boundary of each layer Xi, we now solve
the Dirichlet problem with given boundary values:

∆f = 0 in Xi

f = prescribed height values on ∂Xi (3)

More precisely, we solve the corresponding discrete variational formulation

Av = b with v, b ∈ Rd×1, A ∈ Rd×d (4)

where d is the number of vertices of Xi, A is the Laplacian matrix, containing
the well-known cotan weights of the underlying triangle mesh, and b is the right
side, which is almost zero except for the boundary values f .

The solution is a harmonic function and produces a smooth surface in the
interior of all sheets. However, along the cuts the surface is in general not C1

continuous.
It should be mentioned that this height function is just one option and of

course one is free to choose any arbitrary height function. Heuristically, harmonic
functions often produce elegant surfaces and they are closely related to holomor-
phic functions (in fact, real and imaginary part of a holomorphic function are
harmonic functions). The only thing one has to care about is that the values
on the boundary �t together, such that the �gluing� is correctly re�ected by the
model.

5 Results

5.1 Riemann Surface Models

The following models are generated by our algorithm. We applied further domain
coloring techniques on some models, which are then shown in Sect. 5.2. Branch



points are highlighted as small yellow balls. The transition between adjacent
layers as well as the surface boundary is marked by black lines.

Figures 7 and 8 show a two-sheeted Riemann surface with two branch points
of shift 1 (i.e. index is 2). We generated two embeddings using di�erent cut
graphs. The cut graph in Fig. 7 directly connects both branch points, whereas in
Fig. 8, the two branch cuts emanate from a singularity and both meet at in�nity.
Thus, the situation is indeed the same and both surfaces are therefore topolog-
ically equivalent. Since we can only compute a compact subset of the in�nite
Riemann surface, we have to take care, that the height function respects the
layer shift at the patch boundary, whenever the cut graph meets the boundary.

(a) In this case the branch cut coincides
with the line of self intersection, which is
in general not the case.

(b) A side view shows the similarity to
the schematic pictures in Fig. 4

Fig. 7: A surface with two sheets and two branch points of index 2.

Fig. 8: Another embedding of the Riemann surface from Fig. 7.

Figure 9 shows a Riemann surface with three sheets and two branch points
of index 3, the shifts are 1 and −1. When crossing the branch cut between the
two singularities from left to right one ends up the next lower sheet, or on the
top most sheet when starting from the lowest one.

A more complex model is shown in Fig. 10. It has four sheets and four branch
points A,B,C,D of shift 1, 2, 2 and 3, respectively. The branch points form a
square (the branch point on the corner in the back is hidden) and are connected



(a) The black line in the middle denotes the
branch cut, where two sheets are glued to-
gether. The grey lines denote self intersection
of the surface.

(b)

(c)

(d)

Fig. 9: A surface with three sheets and two branch points. (a) shows the whole surface.
(b)-(d) show the three sheets separately.

by branch cuts between A and B, B and C and C and D. The two leftmost
branch points (A and D) in (a) are not connected. When starting from the right
on the upper sheet and crossing the branch cuts between C and D and A and
B, one does not change the layer. This corresponds to the fact that the branch
shifts along these cuts sum up to four which is zero modulo four.

(a) (b)

Fig. 10: Riemann surface with four layers and four branch points. (a) Whole surface.
(b) Second and third sheet slightly rotated.

Figure 11 again shows the same situation with the same branch points as in
Fig. 10, but with a di�erent branch graph. This time, A and C are connected as
well as B and D, so the branch graph is disconnected. Note that this is also a



valid con�guration since the branch shifts along each cut sum up to zero modulo
four. However, we obtain a di�erent embedding in R3, although all branch shifts
are the same as in the previous picture. In (b) one can clearly see the layer shift
of one when crossing the cut in the front of the picture. Note that the second
branch cut in the back connects two branch points of shift 2 and thus the model
locally decomposes into two connected components around this cut. That is why
a second pair of branch points is introduced which can be slightly seen.

(a)

(b)

(c)

Fig. 11: Riemann surface with four sheets and four branch points. (a) Whole surface.
(b) Second and third sheet. (c) Displaying only the third sheet reveals the hidden
branch points.

5.2 Domain Coloring on Riemann Surfaces

As mentioned in Sec. 2.2, Riemann surfaces are naturally induced by holomorphic
covering maps. However the visualization of complex functions as graphs over
a domain is not possible, since their graphs live in C2 ∼= R4. That is why one
often makes use of an elegant technique called domain coloring (see [5] or [10]),
which encodes the range of a complex function as a color scheme that is plotted
directly onto the domain. We use this technique to visualize complex functions
whose proper domains are Riemann surfaces. In particular, for a given covering
map η as in Fig. 2, we can de�ne its inverse mapping as a function living on
the Riemann surface. Those functions are naturally multivalued when de�ned
over the complex plane and hence cannot be properly de�ned as holomorphic
functions on C � in fact they are not even continuous and one has to cut the
plane in order to de�ne at least a so called holomorphic branch of a function.
With the notation of Fig. 2, these branches can be considered as restrictions of
f−1 to a sheet Xi ⊂ X and π |Xi becomes an isomorphism between the cut
complex plane and Xi.

We apply domain coloring to Riemann surfaces and obtain globally color-
continuous plots corresponding to globally holomorphic mappings on the sur-
faces. These surfaces are computed by using our method with the branch points



and the shifts of η which can be derived from the function de�nition. The color-
ing is induced by f−1 and the colored surfaces reveal the behaviour of a function
as well as the topology of the induced Riemann surface.

Note that the composition f−1 ◦ (π |Xi)
−1 maps from the cut complex plane

into C and can be visualized using planar domain coloring, but the unrestricted
map (π◦f)−1 is in general multivalued. Figures 9 � 12 show some colored surfaces
together with planar domain colorings obtained by restriction to a single sheet.
A two-sheeted Riemann surface with domain coloring is shown in Fig. 12.

(a)

(b)

(c)

(d) (e)

Fig. 12: A function having two branches and a branch cut between the branch points
−1 and +1. (a) and (b) show the model from Fig. 7 with the coloring for f−1(z) := (z−
1)1/2(z+1)1/2. Whereas the restriction to a single sheet results in a color�discontinuous
planar plot (see (d) and (e)), the coloring on the surface is continuous. (c) shows the
local topology of our model close to a branch point. The typical two-sheeted helix is
a picture often shown as an explicitly parametrized surface for the Riemann surface
induced by z 7→ z2.

Figure 13 shows the domain coloring of a function having three sheets and
a two branch points at +1 and −1. The Riemann surface is the same one as
in Fig. 9, this time equipped with domain coloring of a holomorphic function.
One can see the smooth transition between the �rst and the third sheet in (a)
whereas (b) shows the transition between the second and third sheet.

Figure 14 shows a Riemann surface with two branch cuts which are not
connected, or, equivalently, as being connected by a branch cut with shift 0,
which does not cause any sheet transition. As in the example in Fig. 12, the
branch cuts connect two sheets and the restriction to a single sheet results in a
discontinuouities of the branched function, see (c), (d). Note that the function
is continous on every sheet between the branch cuts.



(a) (b)

(c) (d) (e) (f)

Fig. 13: Domain coloring of a function with three branches. (c) Local model in a neigh-
borhood of a branch point The planar color plots (d)�(f) are discontinuous between
the branch points which is resolved on the Riemann surface model.

(a)

(c) (d)

(b)

Fig. 14: (a) and (b) Domain colored Riemann surface with two disconnected branch
cuts. (c) and (d) The planar domain coloring of the function is discontinuous at the
branch cut.



2

3

5: 4: 3:

2: 1: 0:

Fig. 15: A 6-sheeted covering of a function having two branch cuts with di�erent shift
and thus with branch points of di�erent branch indices � two of index 3 and two of
index 2. Top left: whole covering. Top right: 2d view on top most layer. The black lines
are the cut paths with not vanishing shift (shift 2 and 3). The 6 pictures below show
the layers separately.

6 Outlook

Although our algorithm is capable to deal with a large class of functions, there
are some issues left to solve.

Having realized the generation of Riemann surface models in R3 it is tempt-
ing to switch to the projective setting and consider compact surfaces over the
compacti�ed complex plane C∪{∞}, i.e. the Riemann sphere. A closely related
advancement is the consideration of covering surfaces over arbitrary manifolds.

Another challenging task is the extension of domain coloring to maps between
arbitrary Riemann surfaces, i.e. maps which are multivalued and non-injective
when de�ned on the complex plane. This implies that neither the map itself nor
its inverse can be continuously de�ned on C.
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